Infertility, In Vitro Fertilization (IVF) and Genetic Testing

Michele Evans, M.D.

evansivf@havingbabies.com

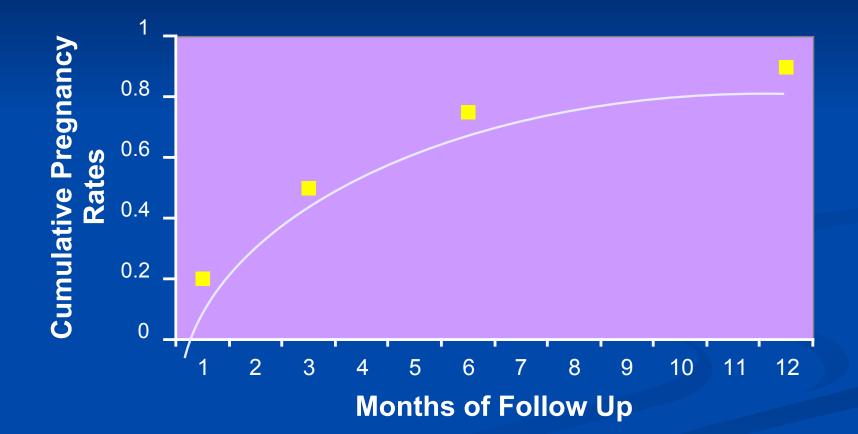
REPRODUCTIVE ENDOCRINOLOGY & INFERTILITY

Do you have any friends or family members that have struggled with infertility?

a. Yes b. No

Do you think that you are fertile?

a.Yes b.No


What percentage of the population is subfertile or infertile?

a. 1-2%
b. 5-10%
c. 10-15%
d. 15-20%
e. 20-25%

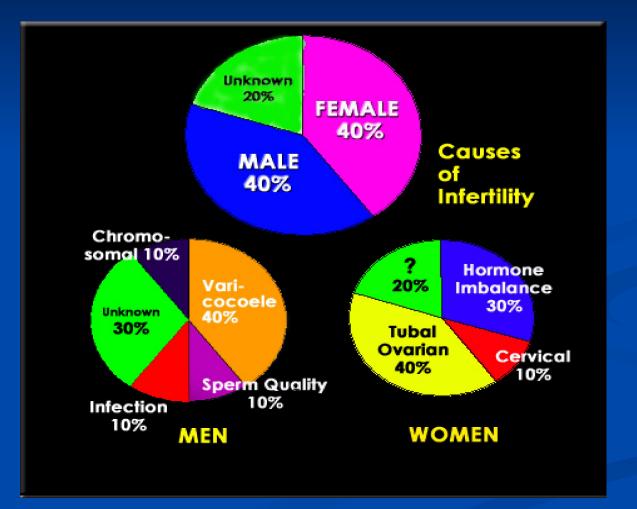
Outline

Infertility Treatment Options In Vitro Fertilization Egg Freezing Surrogacy Genetic Testing Preconception Preimplantation Prenatal **Controversies**

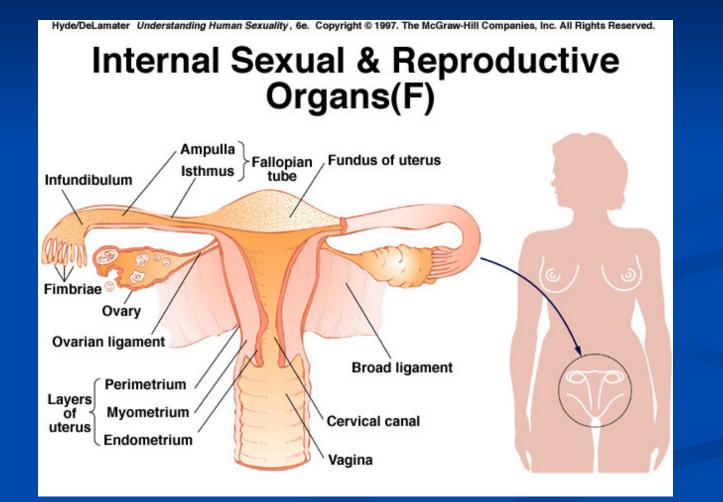
Normal Fertility

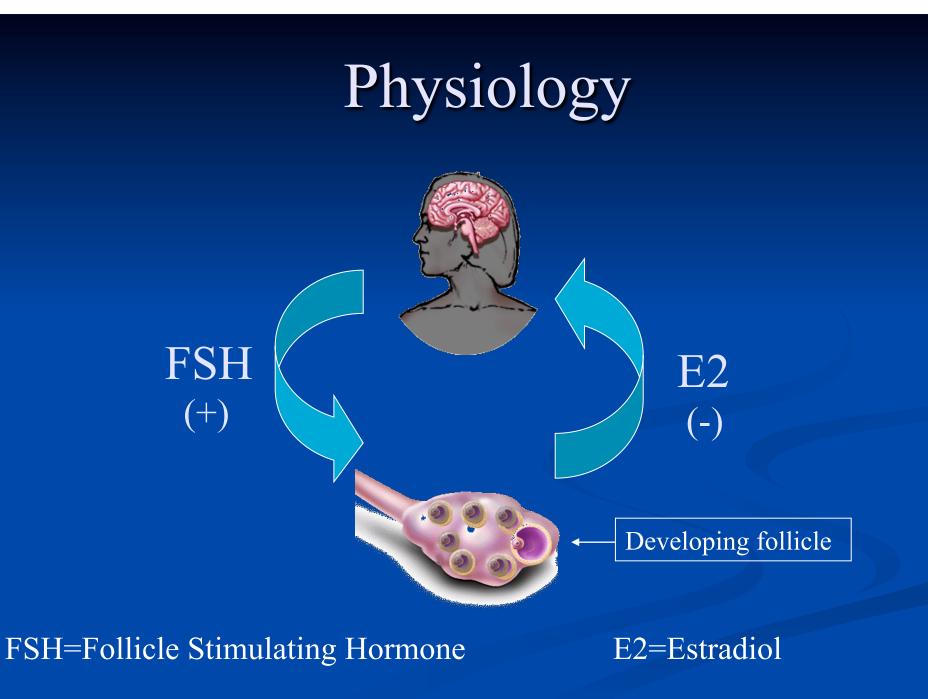
Hull, et al: Br Med J 1985:291;1693

Overview of Infertility


Definition: 1 year of well-timed, unprotected intercourse without a pregnancy

■ 10-15% of population is infertile (subfertile)


What factor might cause problems with fertility?


a. boxer shorts
b. drinking a glass of wine every day
c. eating disorder
d. hiking for 30 minutes per day
e. history of yeast infections

Causes of Infertility

Female Reproductive Organs

Causes of Female Infertility

Ovary
Tubes
Uterus
Cervix
Hormones
Chromosomes

Causes of Female Infertility - Ovary

■ AGE

Problems with ovulation

Premature ovarian failure

Do women continue to produce eggs throughout their life (from puberty until death)?

a.Yes b. No

Ovary - Female Age

Women are born with their lifetime egg supply
4 million at 20 weeks gestation
400,000 at birth
100,000 eggs left at time of puberty
Fertility initially declines at age <u>27</u>
Significant decline at age 37-38
Rare pregnancies after age 44

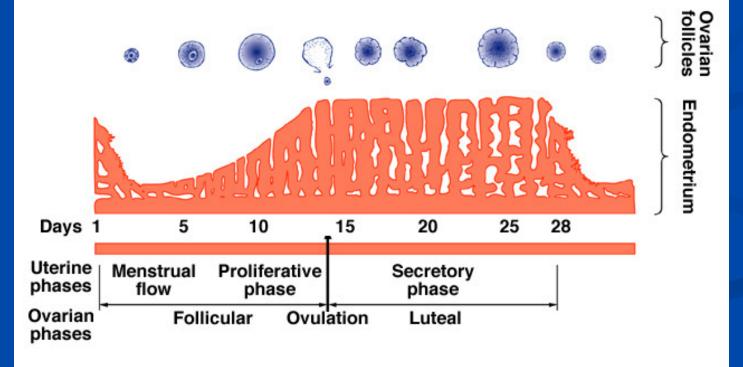
Percentage of Married Women Who are Infertile

From 3 national U.S. surveys

Age (years)	Infertile
20-24	7.0
25-29	8.9
30-34	14.6
35-39	21.9
40-44	28.7

Menken et al, Science 1989;23:1389

Prevalence of genetically abnormal oocytes in infertile women



Ovary - Ovulation

Hyde/DeLamater Understanding Human Sexuality, 6e. Copyright © 1997. The McGraw-Hill Companies, Inc. All Rights Reserved.

The Biological Events of Menstrual Cycle

(c) Changes in ovarian follicles and uterine endometrium

Ovary - Causes of Anovulation

Hormone imbalance Obesity Anorexia Significant stress Patients display: Irregular menstrual cycles Skipped cycles Minimal or absent premenstrual symptoms

Ovary – Premature Ovarian Failure

Menopause prior to age 40 Decreased Estrogen ■ Increased FSH **Causes** ■ Autoimmune ■ Genetic ■ Idiopathic 1-2% pregnancy rate

What factor would not cause a woman's fallopian tubes to be blocked?

a. diabetesb. ruptured appendixc. endometriosisd. chlamydia infectione. tubal ligation


Causes of Female Infertility – Fallopian Tubes

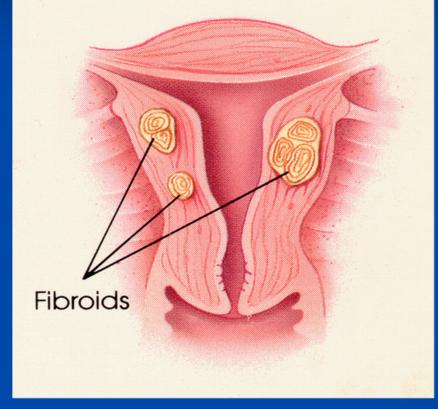
■ Infection (chlamydia)

Endometriosis

■ Tubal ligation (female sterilization)

Open Tubes

Blocked Tubes



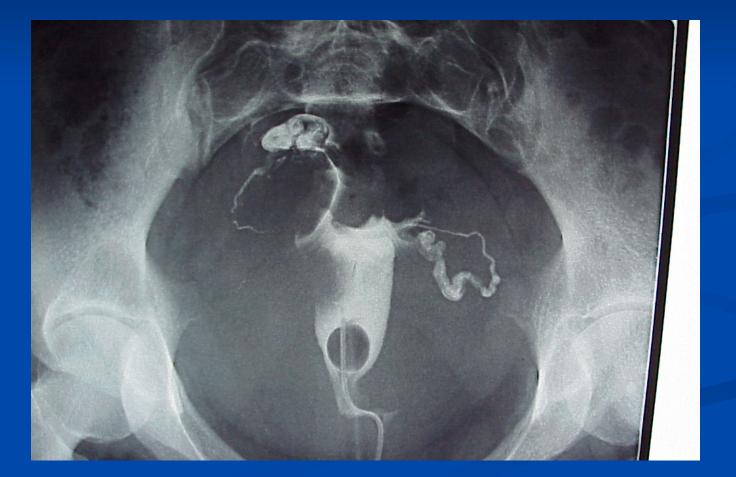
Female Infertility - Uterus

Uterus
Fibroids
Polyps
Mullerian (congenital) defects
Absent
Bicornuate/Septum

Female Infertility

Fibroid tumors

Uterine muscle tumor


■ Benign (>95%)

25-30% of women

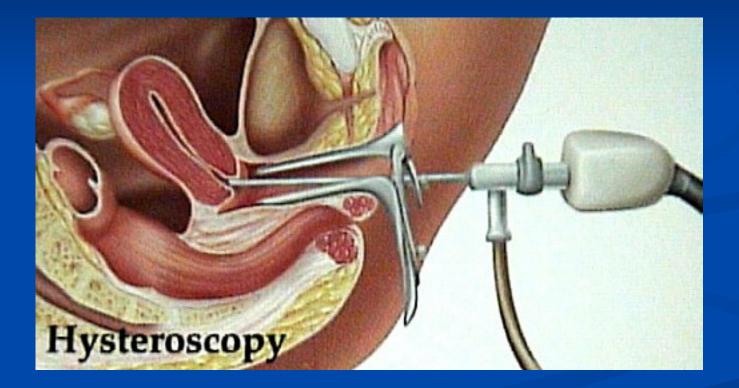
Normal Shape of Uterus

Fibroid Uterus

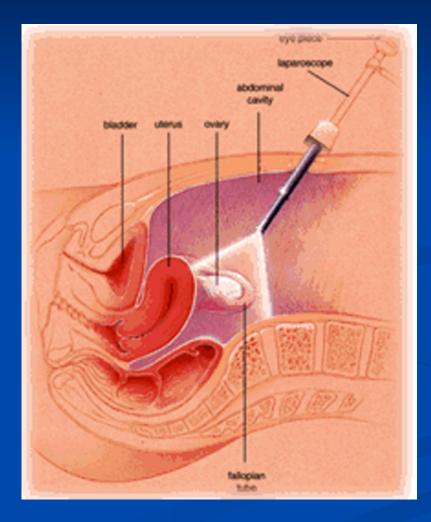
Female Infertility - Uterus

Uterus
 Tumors

 Fibroids
 Polyps


 Mullerian defects (congenital)

 Absent uterus
 Bicornuate/septate


Mullerian Defect

Treatment with Hysteroscopy

Treatment with Laparoscopy

Female Infertility - Cervix

Cervix
 Post-surgical
 Stenosis
 Mucus changes

Female Infertility - Hormones

Endocrine abnormality (hormones)
 Thyroid
 Prolactin
 Polycystic ovary syndrome (PCOS)
 Estrogen, insulin
 Hypothalamic hypogonadism
 Stress
 Exercise (ballet dancer)

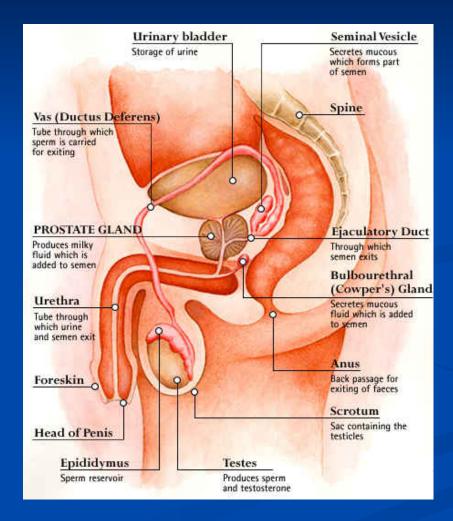
Other Causes of Female Infertility

Others
Chromosome abnormalities
Turner's syndrome (XO)
Androgen Insensitivity (XY)
Male pseudohermaphrodite
Female phenotype
Blind vaginal canal
Inguinal hernia (50%)

Sperm Are Also Required!!

Do men continue to produce sperm throughout their life (from puberty until death)?

a.Yes b.No

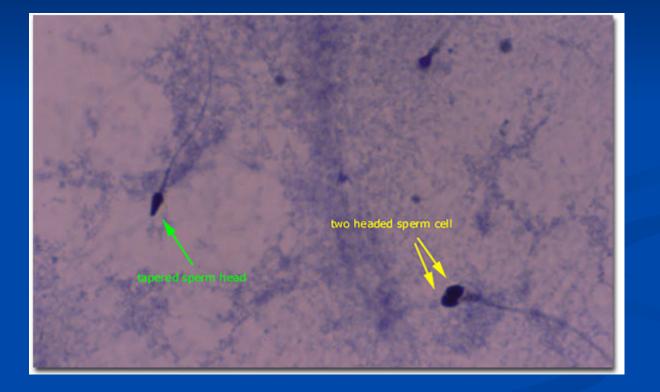

Causes of Male Infertility

Abnormality in sperm production

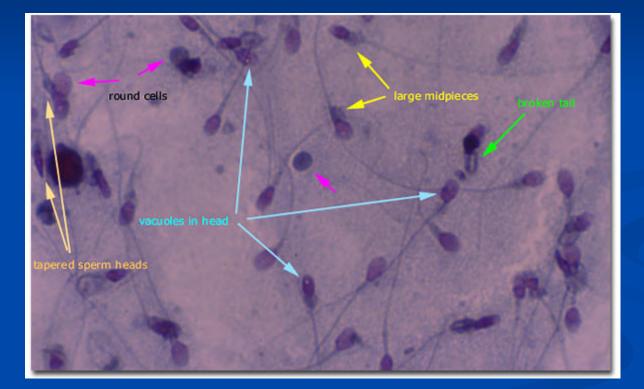
Abnormality in sperm function

Obstruction in the ductal system

Male Reproductive Organs


Sperm: Semen Analysis

Volume: ≥ 2 mL
Concentration: ≥ 20,000,000 per mL
Motility: ≥ 50%
Normal morphology: ≥ 40% normal
Krueger strict criteria: ≥ 14% normal
Best predictor of fertilizing ability


Normal Sperm Morphology

Abnormal Morphology

Abnormal Morphology

How many are needed for fertilization? Natural conception **20,000,000** Intra-uterine insemination **1,000,000** ■ In-vitro fertilization (IVF) **10,000** Intra-cytoplasmic sperm injection (ICSI) **1**

Causes of Male Infertility

Abnormality in sperm production

Abnormality in sperm function

Obstruction in the ductal system

Abnormalities of Sperm Production

Genetic ■ Y chromosome microdeletions Damage to testes – anatomical Cryptorchidism ■ Varicocele ■ Infection Mumps orchitis Gonadotoxins

Abnormalities of Sperm Function

Antisperm antibodies
Genital tract inflammation

prostatitis
Varicocele
Failure of acrosome reaction
Problems with sperm binding/penetration

Obstructions in Ductal System

■ Vasectomy

Congenital bilateral absence of the vas deferens

Epididymis/ejaculatory ducts
 Congenital or acquired

What percentage of men desire another pregnancy after having a vasectomy?

a. 1%
b. 5%
c. 10%
d. 25%
e. 100%

Male Infertility - Lifestyle

Tobacco Marijuana Alcohol **Cocaine** Steroids (can be permanent) Heat **Exercise**

Infertility: Initial Evaluation

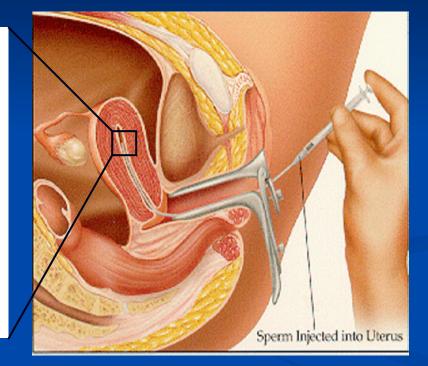
Eggs
Ovulation
Egg quality
Sperm
Presence
Quality
Gamete transport/Implantation
Hysterosalpingogram

Unexplained Infertility

Work-up is negative

■ 15-20 % of couples

Infertility Treatments


Improve Timing of Intercourse Intrauterine insemination (IUI) Clomiphene citrate + IUI ■ FSH + IUI In Vitro Fertilization (IVF) ■ "Standard" IVF ■ Egg donation + IVF ■ Egg Freezing + IVF

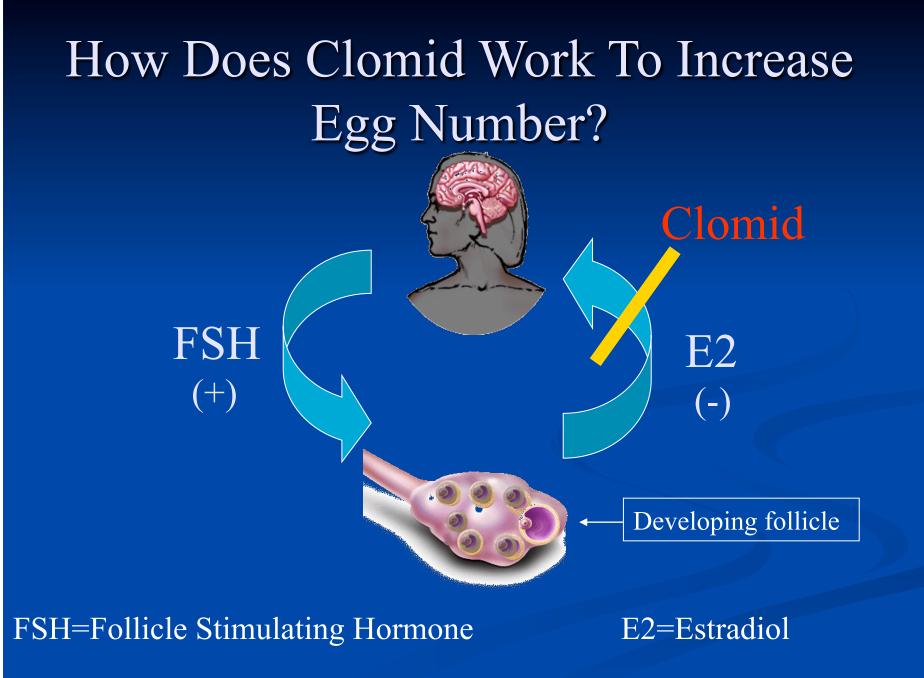
Intrauterine Insemination (IUI)

IUI Procedure

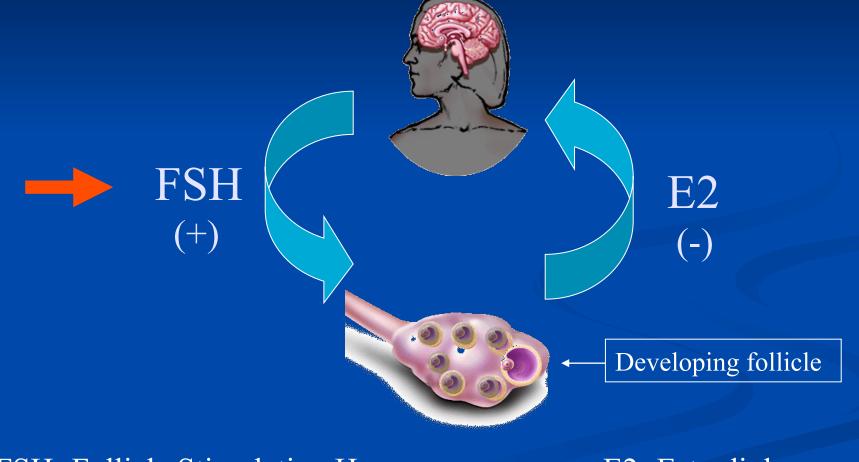
Through the process of IUI, sperm are placed high in the female reproductive tract to enhance the chance of successful fertilization.

Goal is to Maximize the Chance of Fertilization

- Increase Number of Eggs
- Position Sperm Closer to Eggs

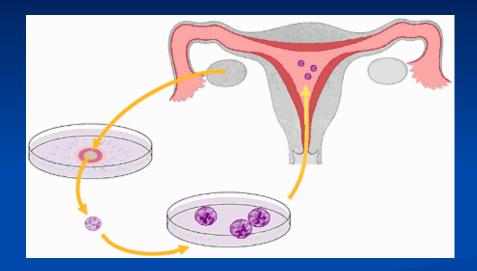

Infertility Treatment Options

■ IUI, FSH or FSH + IUI


Patients with unexplained infertility

Treatment	Cycles	Pregnancy	Pregnancy per
			cycle
IUI	30	1	2.7%
FSH	49	3	6.1%
FSH+IUI	34	9	26.4%

Serhall et al, Fertil Steril 1988;49:602


How Does Recombinant FSH Work To Increase Egg Number?

FSH=Follicle Stimulating Hormone

E2=Estradiol

In Vitro Fertilization

Why In Vitro Fertilization?

Infertility
DNA Testing

Genetic Disorders
Gender Selection

Non-Traditional Life Styles

Who should decide if a couple/person can have infertility treatment?

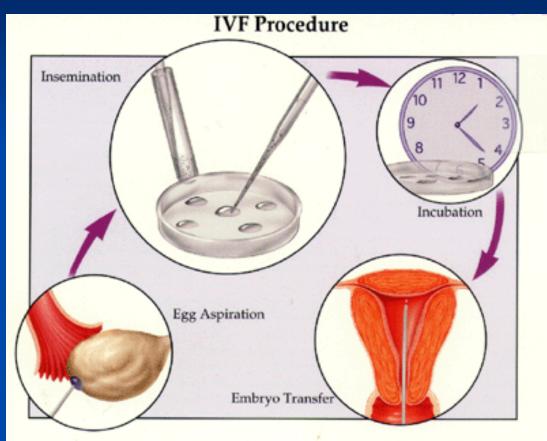
a. state governments
b. national fertility agencies (ASRM)
c. reproductive specialists
d. psychologists/psychiatrists
e. the couple/person

Should a 52 year old postmenopausal woman be able to use her daughter's eggs to have a child with her new 28 year old husband?

a. Yes b. No Should a woman be able to have sperm extracted from her husband's newly dead body so that she can have "their child"?

a. Yes b. No

In Vitro Fertilization - History


■ 1978 – First "test tube" baby was born in England

■ 1981 – IVF in U.S.

Started with GIFT and ZIFT

■ 2008 - >98% IVF with transfer of embryo to uterus

In Vitro Fertilization (IVF)

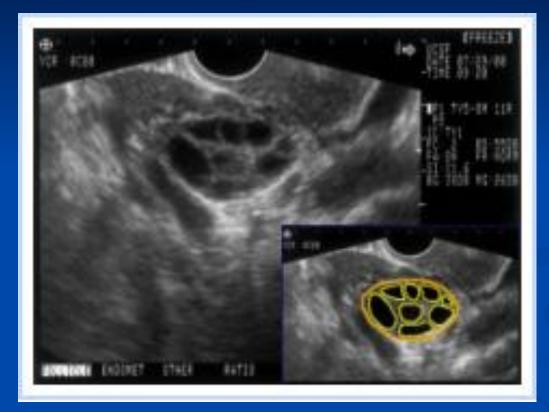
In IVF, eggs are harvested from the woman's ovary and fertilized in the laboratory with sperm. The embryos are then transferred into the uterus.

IVF Statistics - 2005

422 U.S. programs offer IVF

134,260 cycles of ART treatment

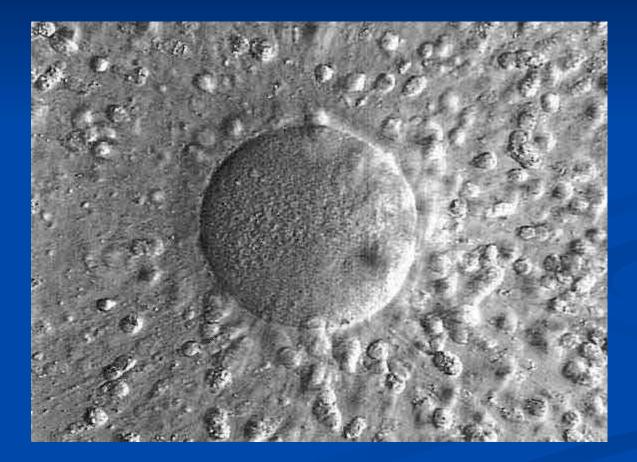
9,649 donor oocyte cycles

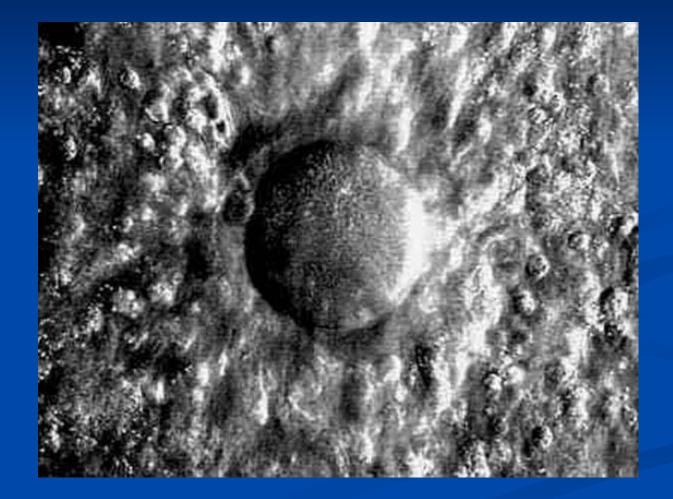

38,910 deliveries (birth of 52,041 neonates)

CDC 2005 National Report

Who Needs IVF?

Failed other treatments Tubal damage Significant male factor Absent uterus Carriers of genetic diseases Gender selection Cancer patients Non-traditional lifestyle


Ovarian Hyperstimulation



Bad Egg

Fertilization

2 Pronuclei (2PN)

1 day after egg retrieval

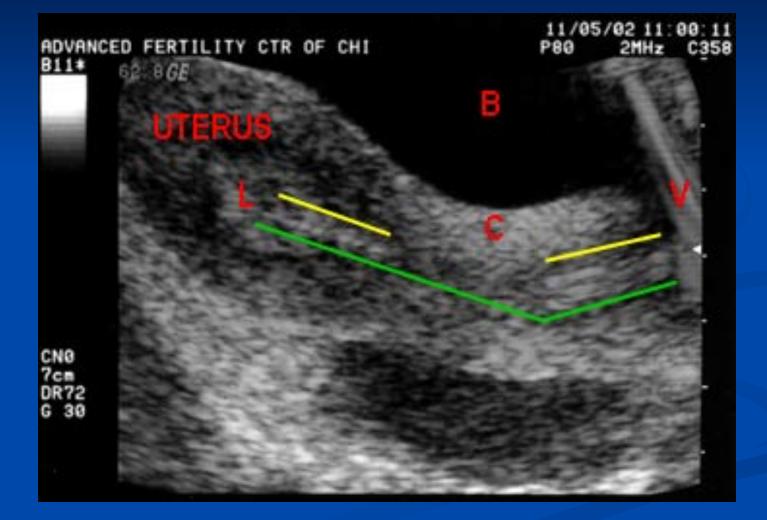
Day 3 Embryo

Pre-Implantation Genetic Testing Stage

Day 3 Embryo

Blastocyst – Day 5

Source of Stem Cells

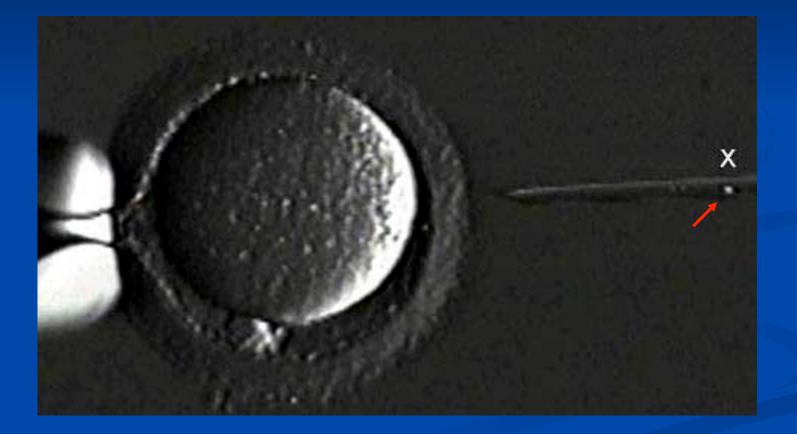

Hatching Blastocyst

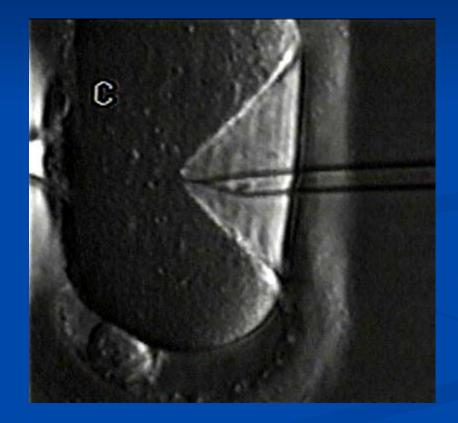
Embryo Transfer

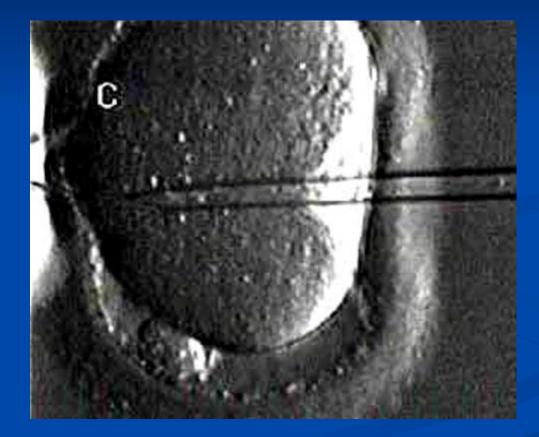
Embryo Transfer

Special IVF Procedures

- Assisted hatching
- Intracytoplasmic sperm injection (ICSI)
- Preimplantation genetic diagnosis (PGD)
- Freezing
- Egg donation
- Surrogacy


Assisted Hatching


Empty Zona



What are the risks of IVF?

a. bleeding requiring blood transfusion
b. pelvic infection
c. increased risk of congenital anomalies
d. multiple pregnancies
e. all of the above

How many embryos are recommended to transfer into a 42 year old woman's uterus?

a. 1
b. 2
c. 3
d. 4
e. 5

How Many Embryos are Transferred?

Related to age and embryo quality

- <35 = 2
- 35-37 = 2-3
- 38-40 = 3-4
- >40 = up to 5

For patients with 2 or more failed IVF cycles, or a poor prognosis, can add more based on clinical judgement

What Happens to the Other Embryos?

Freeze Embryos
Donate For Research/Stem Cells
Embryo Adoption
Discard

What Would You Do With Your Embryos?

a. Freeze and Store Themb.Donate For Research (e.g., Stem Cells)c. Donate To Others For Adoptiond.Discard

IVF Success Rates - 2005

U.S. Fertility Centers From SART/CDC (HRC)
Female age

<35 - 37% (43%)
35-37 - 30% (36%)
38-40 - 20% (27%)
>40 - 11% (18%)

IVF Statistics - 2000

65.1% singletons (16,533)

30.8% twins (7,817)

3.9% triplets (1,000)

0.2% higher order multiples (44)

Singleton Pregnancy

Twin Pregnancy

Triplet Pregnancy

IVF and Multiple Pregnancy

Maternal complications
Fetal complications
Cost
"Selective reduction"
Single embryo transfer vs. success rates

Cost of IVF

 \Box IVF cycle + medications = \$10,000-15,000 - Assisted hatching = \$500 \Box ICSI = \$1,500 Freezing = \$650Storage = \$360 \blacksquare Egg Donor = Minimum \$5,000 Surrogate = Minimum \$10,000-15,000

Not Covered By Insurance In Most States!

Egg Donation

Give The Gift Of Life... And Make A Difference

EXCEPTIONAL DONORS

Exceptional Donors, Inc. was founded to help couples struggling with the pain of infertility in the Portland, Oregon area and throughout the United States. Egg donation is a wonderful way for families to grow. And we can help. Allow us to assist you as you begin your journey toward becoming a parent.

We are always searching for exceptional donors. If you are between 19 and 32 years of age, healthy, intelligent, athletic, artistic, musically talented, attractive, or possess other exceptional qualities, you could be a candidate for our program.

We offer \$5,000 compensation for first-time donors, and more for subsequent donations.

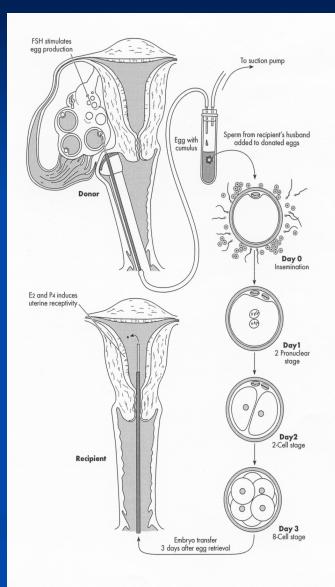
Call 866.296.1015 or visit www.exceptionaldonors.com to learn more about becoming an exceptional egg donor.

Would you consider being an egg or sperm donor?

a.Yes

b.No

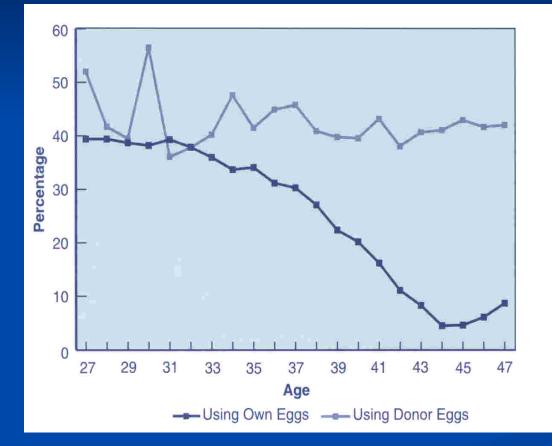
Have you ever been an egg or sperm donor?


a.Yes b.No

Egg donation

IVF for two

Donor


- Standard controlled ovarian hyperstimulation
- Egg retrieval
- RecipientEmbryo transfer

Who are candidates to be an egg donor ?

- 21-35 years old (older if a friend or relative)
 FSH <10
- Negative donor
- Good health and genetic history
- Preferably prior egg donation experience
 - How many eggs were produced?
 - Did pregnancy result?

Current status of ART in the USA

Live birth rates per transfer for fresh embryos from own and donor eggs, by age of recipient

SART registry, 1998

Egg Donation

Grade A: The Market for a Yale Woman's Eggs

When a Yale undergraduate explored becoming an egg donor for a wealthy couple willing to pay top dollar to the right candidate, she didn't realize how unsettling the process of candidacy would prove to be

by Jessica Cohen

Egg Donation

- October 23, 1999
- Selling Fashion Models' Eggs Online Raises Ethics Issues
- By CAREY GOLDBERG
- CAMBRIDGE, Mass. -- To the horror and disgust of mainstream infertility groups, a longtime fashion photographer has begun offering up models as egg donors to the highest bidders, auctioning their ova via the Internet to would-be parents willing to pay up to \$150,000 in hopes of having a beautiful child.

Egg Donation - Ethical Issues

Egg Donor
 Known or anonymous
 How many times to donate?

RecipientHow old is too old?

Pregnancy in the Sixth Decade of Life

USC experience: 1991-2000

77 recipients of egg donation
Mean age 52.8 + 2.9 years

Of the 77 women, 42 (54.5%) had live births

45 deliveries in 42 women

Paulson, Tourgeman, Boostanfar et al, JAMA 2002:228;2320.

Pregnancy in the Sixth Decade of Life: Obstetric Complications

Pre-eclampsia ■ 35⁰/₀ Background Incidence **3**-10% **Gestational Diabetes** ■ 20[%] Background Incidence **5%**

How old is too old?

■ Is 55 a "physiological limit"?

■ Marked increase in pre-eclampsia

Increase in diabetes

Genetic Testing

Preimplantation

Prenatal

Postnatal

Preconception Counseling

Offered to all women Prenatal vitamins – 400 micrograms folic acid/day Rubella immunity ■ Varicella immunity Rh status ■ HIV Hepatitis B screen Cystic Fibrosis screening Spinal muscular atrophy (SMA)

Preconception Counseling

Offered to certain ethnic groups Mediterranean – thalassemia ■ African-American – sickle-cell anemia Caucasian/Hispanic – cystic fibrosis Ashkenazi Jews – 7 autosomal recessive disorders ■ Gaucher disease (1/13), Tay-Sachs (1/30), Familial dysautonomia (1/30), Canavan disease (1/40), Fanconi anemia (1/89), Niemann-Pick disease (1/90), Bloom syndrome (1/100)

Prenatal Testing

Ultrasounds

Serum screens

Chorionic villus sampling (CVS)

Amniocentesis

Prenatal Tests - Ultrasound

Nuchal translucency screening

■ Performed between 10-13 weeks gestation

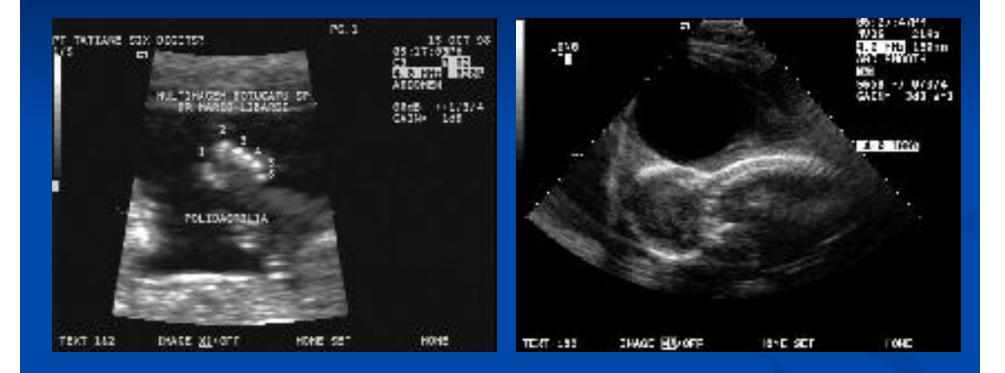
Screen for Down Syndrome

Nuchal Translucency

Prenatal Tests - Ultrasound

Second trimester ultrasound
Detailed exam
Down Syndrome, other trisomies
Cardiac, renal, spinal, limb, brain deformities
Cleft lip/palate

Ultrasound Abnormalities



Echogenic bowerls

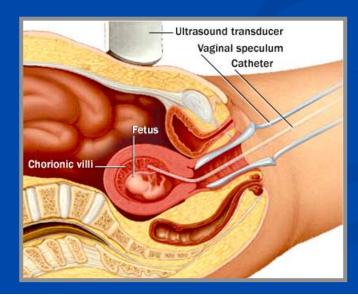
Ultrasound Abnormalities

Prenatal Tests - Serum

■ 15-20 weeks gestation

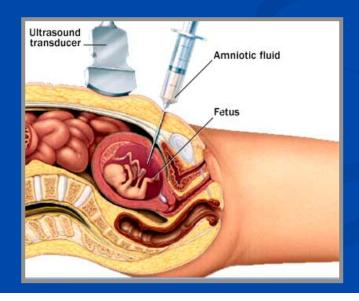
Quad Screen
Tests for AFP, hCG, uE3 and inhibin A
Neural tube defects, Down syndrome, Trisomy 18, Abdominal wall defects
Readjusts age-related risks

Prenatal Tests


Who is offered further testing?

- Advanced maternal age
- Previous child or pregnancy with birth defect
- Suggestive screening test results
- Family history

Prenatal Tests – CVS


Chorionic Villus Sampling

- 11-13 weeks gestation
- Catheter/needle biopsy of placental cells
- Performed through cervix or abdomen
- Can test for chromosome and gene defects
- 1-2% miscarriage rate
- Digit/limb deficiencies (10 weeks)

Prenatal Tests - Amniocentesis

- Performed at 15-18 weeks gestation
- 10 cc amniotic fluid
- Living cells from fetus in amniotic fluid
- Cells grown in lab for 1-2 weeks
- Results in 3 weeks
- Chromosome and gene defects

Postnatal Testing

Most done during first day of life Heel stick California (mandatory) Galactosemia Hypothyroidism (congenital) Phenylketonuria (PKU) ■ Sickle Cell Disease (SCD) and Hemoglobinopathies \blacksquare + 35 Others as of July, 2005

Postnatal Screening – Tandem Mass Spectrometry Screening Program

Fatty Acid Oxidation Disorders

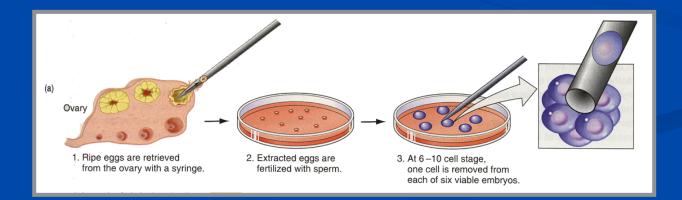
Carnitine/Acylcarnitine Translocase Deficiency (Translocase) Carnitine Palmitoyl Transferase Deficiency Type I (CPT-I)² 3-Hydroxy Long Chain Acyl-CoA Dehydrogenase Deficiency (LCHAD) 2,4-Dienoyl-CoA Reductase Deficiency² Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD) Multiple Acyl-CoA Dehydrogenase Deficiency (MADD or Glutaric Acidemia-Type II) Neonatal Carnitine Palmitoyl Transferase Deficiency-Type II(CPT-II) Short Chain Acyl-CoA Dehydrogenase Deficiency (SCAD) Short Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency (SCHAD) Trifunctional Protein Deficiency (TFP Deficiency) Very Long Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD)

Organic Acid Disorders

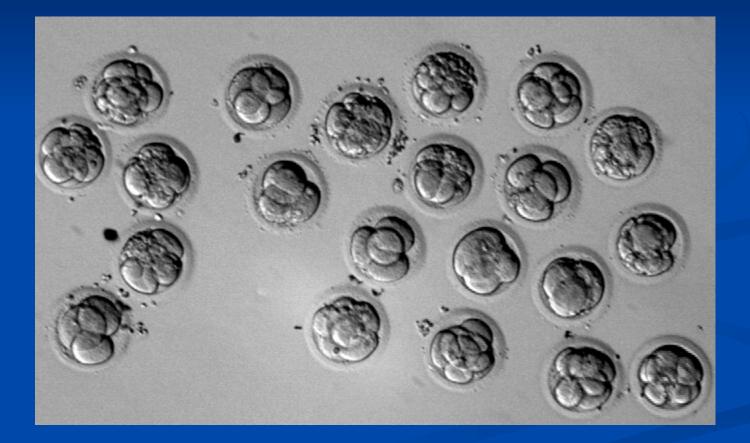
3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency (HMG) Glutaric Acidemia-Type I (GA I) IsobutyryI-CoA Dehydrogenase Deficiency Isovaleric Acidemia (IVA) Acute onset Chronic 2-Methylbutryl-CoA Dehydrogenase Deficiency 3-Methylcrotonyl-CoA Carboxylase Deficiency (3MCC Deficiency) 3-Methylglutaconyl-CoA Hydratase Deficiency Methylmalonic Acidemias Methylmalonyl-CoA Mutase Deficiency 0 Methylmalonyl-CoA Mutase Deficiency + Some Adenosylcobalamin Synthesis Defects Maternal Vitamin B12 Deficiency Mitochondrial Acetoacetyl-CoA Thiolase Deficiency (3-Ketothiolase Def.) Propionic Acidemia (PA) Acute onset Late onset Multiple-CoA Carboxylase Deficiency Malonic Aciduria

Amino Acid Disorders

Argininemia Argininosuccinic Aciduria (ASA Lyase Deficiency) Acute onset Late onset Carbamoylphosphate Synthetase Deficiency (CPS Def.)² Citrullinemia (ASA Synthetase Deficiency) Acute onset Late onset Homocvstinuria Hypermethioninemia Hyperammonemia, Hyperornithinemia, Homocitrullinemia Syndrome (HHH)² Hyperornithinemia with Gyral Atrophy² Maple Syrup Urine Disease (MSUD) Classical MSUD Intermediate MSUD 5-Oxoprolinuria (pyroglutamic Aciduria)² Phenylketonuria (PKU) Classical PKU Hyperphenylalaninemia **Biopterin Cofactor Deficiencies (4)** Tyrosinemia Transient Neonatal Tyrosinemia Tyrosinemia Type I (Tyr I)² Tyrosinemia Type II (Tyr II) Tyrosimenia Type III (Tyr III)


Other Abnormal Profiles

Hyperalimentation Liver Disease Medium Chain Triglyceride (MCT) Oil Administration Presence of EDTA Antigoagulants in blood specimen Treatment with Benzoate, Pyvalic Acid, or Valproic Acid Carnitine Uptake Deficiency²


Preimplantation Genetic Screening (PGS)

Can test embryos for genetic abnormalities prior to implantation

Uses single cell (blastomere) at 8-cell stage

Which Embryo is Disease-Free?

PGS – Clinical Indications

Single gene defects
Balanced translocations
Advanced maternal age (aneuploidy)
Repetitive IVF failure
Recurrent pregnancy loss
Embryo selection

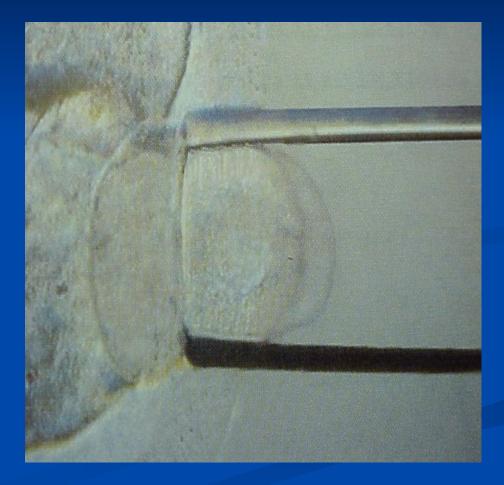
Fluorescence in situ hybridization (FISH) Aneuploidy/translocations and sexing (5-9) chromosomes) \square PCR specific single gene disorders Gene Chips many gene disorders & chromosomal abnormalities at one time

 Achondroplasia •ADPKD1 •ADPKD2 Adrenoleukodystroph •Age-related aneuploidies •Alpha-thalassemia •Alpha-1-antitrypsin •Alport disease Amyloid precursor protein (APP) mutation •ARPKD Becker muscular dystrophy •Beta-thalassemia Charcot Marie Tooth disease Chromosomal translocations Congenital adrenal hyperplasia •Cystic fibrosis Down syndrome Duchenne muscular dystophy • Dvstonia •Epidermolysis bullosa •Familial dysautonomia •Fanconi anemia •FAP •Fragile X syndrome •Gaucher disease •Hemophilia A and B •HLA genotyping HSNF5 mutation

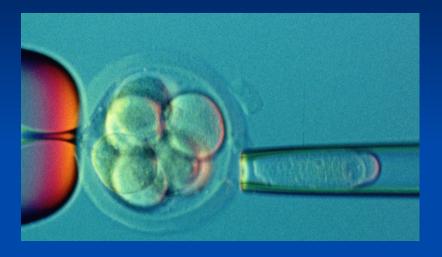
 Huntington disease •Hypophosphatasia •Incontinentia pigmenti •Kell disease •Klinefelter syndrome •LCHAD Lesch Nyhan syndrome Marfan syndrome • Multiple epiphysial dysplasia Myotonic dystophy Myotubular myopathy •NF1 and NF2 Norrie disease Osteogenesis imperfecta OTC deficiency •P53 mutations • PKU Retinitis pigmentosa •SCA6 Sickle cell anemia Sonic hedgehog mutations •Spinal muscular atrophy (SMA) •Tay-Sachs disease Tuberous sclerosis Turner syndrome •Von Hippel Lindau •X-linked hydrocephaly •X-linked hyper IgM syndrome

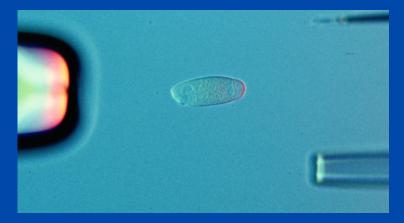
PGS for Single Gene Disorders -Advantages

Safer than elective termination
More psychologically acceptable for couples
Provides couples with another option


Adoption
Sterilization

Donor gametes


 Pre-implantation genetic screening (PGS) has been successfully used in diagnosing and preventing inherited genetic diseases like Cystic Fibrosis, Tay Sach' s, Thalassemia, Sickle Cell Anemia and may be potentially used to screen for cancer mutations.



 After a cycle of invitro fertilization,
 biopsy of a single cell can be performed from an 8 cell embryo
 obtained after 3 days
 of culture in the laboratory.

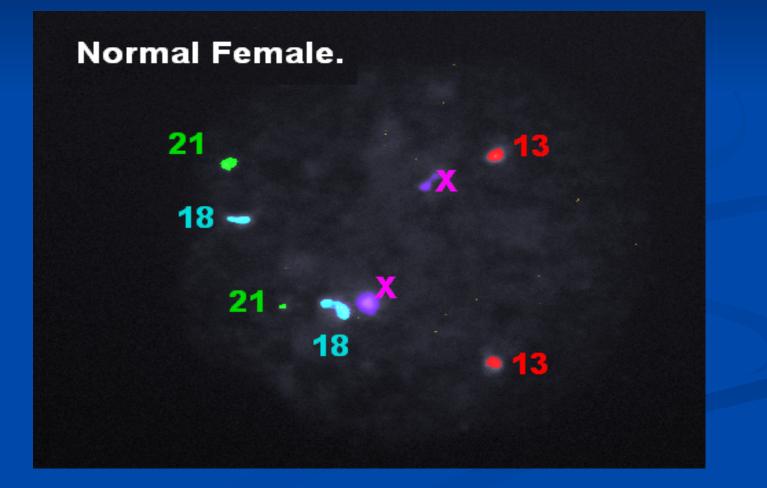
PGS – Timing of Biopsy

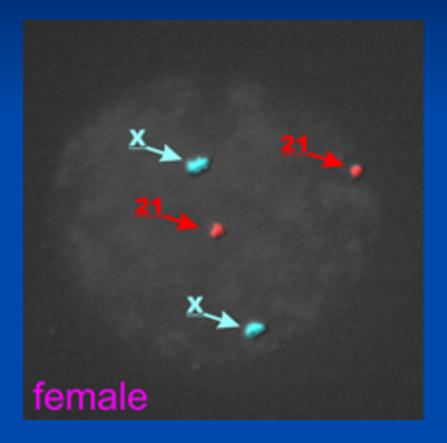
<67 hours post-retrieval</p>

 Implantation rates significantly lower if >70 hours

 Probably represents technical issues with compacting embryo

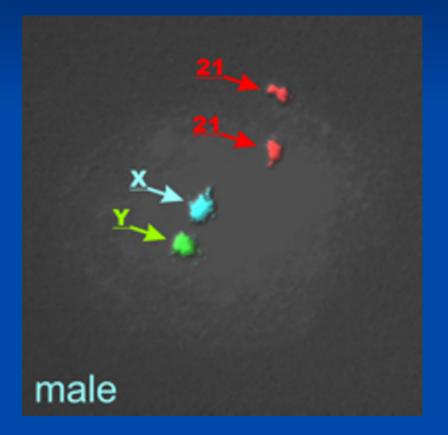
The genetic material of this single cell can be amplified by PCR and the chromosomal mutation or an aneuploidy can be identified in the embryo that underwent a biopsy.


The embryos would continue to grow for 2 more days in the laboratory, awaiting genetic analysis, and confirmation of which embryos were unaffected with the mutation or aneuploidy.


 The unaffected embryos are then transferred to the uterus at the blastocyst stage on day 5 of embryo culture and subsequently a child would be born unaffected from the screened genetic disease.

Five Chromosome PGD

PGS – Female Embryo



 Uses fluorescence in-situ hybridization (FISH) technique to identify XX

Sex-linked diseases

"Family balancing"

PGS – Male Embryo

Uses FISH to identify XY embryo

If you had one or more children of the same sex, would you like to be able to choose the gender of your next child?

a.Yes b.No

Prenatal vs. Preimplantation Diagnosis

	PND	PGS
Cells	>100,000	1
Time	2 weeks	6-10 hrs
Accuracy	99%	99%
Cost	Covered	~\$5,000

Who Would Benefit From PGS?

Couples with a history of -Abnormal numbers of chromosomes
Single gene disorders
Balanced translocations

Couples who --Desire an offspring of a certain sex

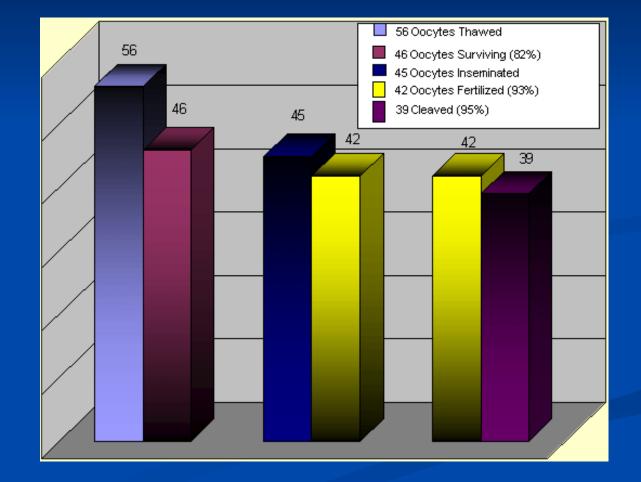
Future considerations

Oocyte cryopreservation

"Pausing the biological clock"

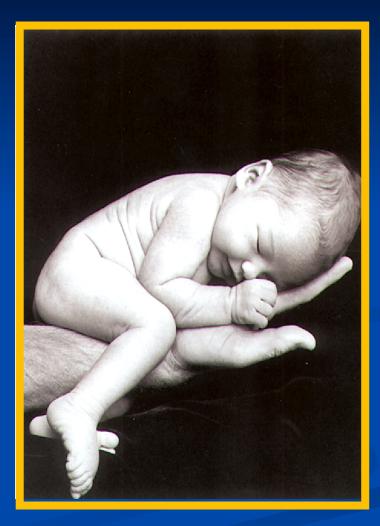
Cytoplasmic transfer

Donation of enucleated oocytes


Reproduction without gametes

Use of nuclear material from somatic cells
Donated or synthetic cytoplasm
Reconstituted oocytes

WEST COAST FERTILITY CENTERS **EGGFREEZING.COM** Egg Banking Now Available to Preserve Your Fertility



Questions??

- Sperm donor
- Female couple
- Huntington's disease
- Single woman
- Sex-linked disease
- Family balancing
- "Wrongful death" of discarded embryo
- Implantation of the wrong embryo

Thank you

